Final report for AOARD project FA23860914084: Fabrication of metamaterials by drawing techniques
نویسندگان
چکیده
We present the design of an invisible metamaterial fibre operating at optical frequencies, which could be fabricated by adapting existing fibre drawing techniques. The invisibility is realised by matching the refractive index of the metamaterial fibre with the surroundings. We present a general recipe for the fabrication of such fibres, and numerically characterise a specific example using hexagonally arranged silver nanowires in a silica background. We find that invisibility is highly sensitive to details of the metamaterial boundary, a problem that is likely to affect most invisibility and cloaking schemes. ©2010 Optical Society of America OCIS codes: (060.2400) Fiber properties; (160.3918) Metamaterials; (290.5893) Scattering, invisibility. References and links 1. J. Ward, “Towards invisible glass,” Vacuum 22(9), 369–375 (1972). 2. R. L. Fante, M. T. McCormack, T. D. Syst, and M. A. Wilmington, “Reflection properties of the Salisbury screen,” IEEE Trans. Antenn. Propag. 36(10), 1443–1454 (1988). 3. A. Alù, and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016623 (2005). 4. A. Alù, and N. Engheta, “Plasmonic materials in transparency and cloaking problems: mechanism, robustness, and physical insights,” Opt. Express 15(6), 3318–3332 (2007). 5. B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett. 103(15), 153901 (2009). 6. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006). 7. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006). 8. J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009). 9. T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010). 10. N. A. Nicorovici, G. W. Milton, R. C. McPhedran, and L. C. Botten, “Quasistatic cloaking of two-dimensional polarizable discrete systems by anomalous resonance,” Opt. Express 15(10), 6314–6323 (2007). 11. W.-H. Sun, Y. Lu, R.-W. Peng, L.-S. Cao, D. Li, X. Wu, and M. Wang, “Omnidirectional transparency induced by matched impedance in disordered metamaterials,” J. Appl. Phys. 106(1), 013104 (2009). 12. Y. Fang, and S. He, “Transparent structure consisting of metamaterial layers and matching layers,” Phys. Rev. A 78(2), 023813 (2008). 13. C. Yang, J. Yang, M. Huang, J. Shi, and J. Peng, “Electromagnetic cylindrical transparent devices with irregular cross section,” Radioengineering 19, 136–140 (2010). 14. J. Hou, D. Bird, A. George, S. Maier, B. T. Kuhlmey, and J. C. Knight, “Metallic mode confinement in microstructured fibres,” Opt. Express 16(9), 5983–5990 (2008). 15. A. Tuniz, B. T. Kuhlmey, R. Lwin, A. Wang, J. Anthony, R. Leonhardt, and S. C. Fleming, “Drawn metamaterials with plasmonic response at terahertz frequencies,” Appl. Phys. Lett. 96(19), 191101 (2010). 16. M. A. Schmidt, L. N. Prill Sempere, H. K. Tyagi, C. G. Poulton, and P. S. J. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B 77(3), 033417 (2008). 17. Y. Ruan, H. Ebendorff-Heidepriem, and T. M. Monro, “Subwavelength soft glass fibres with extremely small hole size for field enhancement,” in Proceedings of the Australasian Conference on Optics, Lasers and Spectroscopy and Australian Conference on Optical Fibre Technology (Adelaide, Australia, 2009). 18. J. C. Knight, “Photonic crystal fibres,” Nature 424(6950), 847–851 (2003). 19. A. Boltasseva, and V. M. Shalaev, “Fabrication of optical negative-index metamaterials: recent advances and outlook,” Metamaterials (Amst.) 2(1), 1–17 (2008). #130951 $15.00 USD Received 30 Jun 2010; revised 4 Aug 2010; accepted 5 Aug 2010; published 6 Aug 2010 (C) 2010 OSA 16 August 2010 / Vol. 18, No. 17 / OPTICS EXPRESS 18095 20. M. Yan, and N. A. Mortensen, “Hollow-core infrared fiber incorporating metal-wire metamaterial,” Opt. Express 17(17), 14851–14864 (2009). 21. E. J. Smith, Z. Liu, Y. Mei, and O. G. Schmidt, “Combined surface plasmon and classical waveguiding through metamaterial fiber design,” Nano Lett. 10(1), 1–5 (2010). 22. A. Tuniz, P. Chen, B. T. Kuhlmey, and S. C. Fleming, “Design of an optical hyperlens with metallic nanocylinders,” in Proceedings of META '10, 2nd International Conference on Metamaterials, Photonc Crystals and Plasmonics (Cairo, Egypt, 2010). 23. P. Markos, and C. M. Soukoulis, Wave Propagation: From Electrons to Photonic Crystals and Left-Handed Materials (Princeton University Press, 2008), Chap. 14. 24. R. C. McPhedran, N. A. Nicorovici, and L. C. Botten, “The TEM mode and homogenization of doubly periodic structures,” J. Electromagn. Waves Appl. 11(7), 981–1012 (1997). 25. P. B. Johnson, and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972). 26. I. H. Malitson, “Interspecimen Comparison of the Refractive Index of Fused Silica,” J. Opt. Soc. Am. 55(10), 1205–1208 (1965). 27. R. C. McPhedran, C. G. Poulton, N. A. Nicorovici, and A. B. Movchan, “Low frequency corrections to the static effective dielectric constant of a two-dimensional composite material,” Proc. R. Soc. Lond. A 452(1953), 2231– 2245 (1996). 28. L. C. Botten, N. A. P. Nicorovici, A. A. Asatryan, R. C. McPhedran, C. M. de Sterke, and P. A. Robinson, “Formulation for electromagnetic scattering and propagation through grating stacks of metallic and dielectric cylinders for photonic crystal calculations. Part I. Method,” J. Opt. Soc. Am. A 17(12), 2165–2176 (2000). 29. R. C. McPhedran, N. A. Nicorovici, L. C. Botten, and K. A. Grubits, “Lattice sums for gratings and arrays,” J. Math. Phys. 41(11), 7808–7816 (2000). 30. T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. M. De Sterke, and L. C. Botten, “Multipole method for microstructured optical fibers. I. Formulation,” J. Opt. Soc. Am. B 19(10), 2322–2330 (2002). 31. B. T. Kuhlmey, T. P. White, G. Renversez, D. Maystre, L. C. Botten, C. M. de Sterke, and R. C. McPhedran, “Multipole method for microstructured optical fibers. II. Implementation and results,” J. Opt. Soc. Am. B 19(10), 2331–2340 (2002). 32. D. Felbacq, G. Tayeb, and D. Maystre, “Scattering by a random set of parallel cylinders,” J. Opt. Soc. Am. A 11(9), 2526–2538 (1994). 33. P. S. Kildal, A. A. Kishk, and A. Tengs, “Reduction of forward scattering from cylindrical objects using hardsurfaces,” IEEE Trans. Antenn. Propag. 44(11), 1509–1520 (1996). 34. E. F. Knott, J. F. Shaeffer, and M. T. Tuley, Radar cross section (New York: SciTech Publishing, 2004), Chapter 3.
منابع مشابه
Final Report of AFOSR Project ”Study of Equatorial Ionospheric Irregularities with ROCSAT-1/IPEI Data for Assessment of Impacts on Communication/Navigation System (IV)” AOARD-06-4046
متن کامل
AOARD Research Project Report : FA 4868 - 08 - 1 - 4100 ( AOARD - 08 - 4100 ) Surface - Plasmon Enhanced Organic thin - film solar cells
متن کامل
Fabrication of optical negative-index metamaterials: Recent advances and outlook
A status report on optical negative-index-metamaterial fabrication is given. The advantages, drawbacks and challenges of different fabrication techniques including electron-beam lithography (EBL), focused-ion beam (FIB) milling, interference lithography (IL) and nanoimprint lithography (NIL) and direct laser writing are outlined. Since the possibility of creating a truly three-dimensional (3D) ...
متن کاملFinal Report for AOARD Grant #FA2386-12-1-4022
The aim of AOARD project #FA2386-12-1-4022 (“Formal System Verification Extension 2”, running from 9 February 2012 to 8 August 2012) is to provide an initial framework prototype for efficiently performing formal proofs of targeted security or safety properties about large, complex software systems. The framework is meant to be generic in terms of the targeted property for the system and to mini...
متن کاملFinal Report for AOARD Grant # FA 2386 - 12 - 1 - 4022 Formal System Verification - Extension 2
The aim of AOARD project #FA2386-12-1-4022 (“Formal System Verification Extension 2”, running from 9 February 2012 to 8 August 2012) is to provide an initial framework prototype for efficiently performing formal proofs of targeted security or safety properties about large, complex software systems. The framework is meant to be generic in terms of the targeted property for the system and to mini...
متن کامل